Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Subsolidus phase relations in CaO-In $_2O_3$ -B $_2O_3$ system and crystal structure of CaInBO $_4$

H.K. Li^{a,b}, G.M. Cai^{a,b,*}, J.J. Fan^{a,b}, Z.P. Jin^{a,b}

^a Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan 410083, PR China
^b School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

ARTICLE INFO

Article history: Received 21 September 2011 Received in revised form 19 November 2011 Accepted 29 November 2011 Available online 8 December 2011

Keywords: Calcium indium borate Solid state reactions Crystal structure X-ray diffraction

ABSTRACT

Subsolidus phase relations of CaO–In₂O₃–B₂O₃ system have been investigated mainly by the conventional solid-state reaction technique and powder X-ray diffraction method. There are nine definite three-phase regions under present experimental conditions. Six binary compounds and one ternary compound were found to exist in this system. Crystal structure of the ternary compound CalnBO₄ was determined from X-ray powder diffraction data using Rietveld method. It crystallizes in the orthorhombic space group Pnma (No. 62) with *a* = 10.3120(3)Å, *b* = 3.42519(8)Å, *c* = 9.5150(3)Å, *V* = 336.07(2)Å³ and *Z* = 4. Mixed occupancies were confirmed in this structure, Ca and In atoms are distributed between two atom sites: 93.6%Ca and 6.4%In occupy one site, 93.6%In and 6.4%Ca occupy another. Two In(Ca)O₆ octahedra and two Ca(In)O₇ polyhedra are linked each other by sharing edges to form ribbons in the *a*-*c* plane and extend infinitely along the direction of the *b* axis. The infrared spectrum of CalnBO₄ has been measured, which is consistent with the crystallographic study. In general, compounds MRBO₄ (M and R are divalent and trivalent cations, respectively) are in a large family of monoborates with different structure types strictly depending on the relative size of the M and R ions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over a long period of time, borates have been established as useful functional materials with rich crystal structure [1–3], wide transparency spectra range, and large band gap. The trivalent-metal or rare-earth-metal borates have been given intense attention because of their outstanding optical properties, for instance, K₂Al₂B₂O₇ (KAB) [4] for second harmonic generation or YBO₃, Li₆GdB₃O₉ and Ba₃InB₉O₁₈ for host of phosphor [5-7]. Our group have made systematic surveys on the $MO-R_2O_3-B_2O_3$ (M = alkaline-earth metal, R = Sc, In, rare-earth metal) systems to search for new functional materials. Very recently, we investigated subsolidus phase relations in CaO-In₂O₃-B₂O₃ system based on exploratory syntheses via solid-state reactions, which led to the discovery of the ternary compound CaInBO₄. Blasse [8] and Capponi et al. [9] have ever reported the lattice parameters of CaInBO₄. However, the crystal structure of CaInBO₄ was not reported until now. In this work, the crystal structure of CaInBO₄ was investigated and determined by Rietveld method, with structure CaYBO₄ as a

* Corresponding author at: School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China. Tel.: +86 0731 88877 732. *E-mail addresses*: gmcai2002@163.com, caigemei@csu.edu.cn (G.M. Cai). reference [10]. In addition, structure types of compounds MRBO₄ (M=divalent cations; R=trivalent cations) were reviewed in this paper.

2. Experiment

Samples were synthesized by high temperature solid state reactions. Stoichiometric mixtures of CaCO₃ (spectral reagent), In₂O₃ (analytical reagent), and H₃BO₃ (analytical reagent) were ground into powders of 200–300 mesh in the agate mortar. The mixtures were preheated in corundum crucibles for 12 h at 600 °C to decompose H₃BO₃ and CaCO₃. Then they were cooled, reground and sintered at 800–1350 °C (depending on their compositions) for 24 h. Finally, all the samples were naturally cooled to room temperature. In all cases, special care was taken to add extra 0.2 mol% H₃BO₃ in order to offset the losses of B₂O₃ in the procedure of synthesis.

X-ray powder diffraction (powder XRD) technology, Inorganic Crystal Structure Database (ICSD release 2011) and Powder Diffraction File (PDF release 2009) were used for phase analysis of the samples. The powder XRD patterns were collected on an X-ray Rigaku diffractometer D/MAX-2500 with Cu K α radiation and graphite monochromator operated at 40 kV, 150 mA. The samples were considered to reach phase equilibrium when their powder XRD patterns showed no change upon successive heat treatments. Data for crystal structure analysis were collected at room temperature in the step-scanning mode with a step size 0.02° (2 θ), counting time 2 s per step and 2 θ range of 10–130°.

With the samples dissolved in nitric acid at boiling point for 1 h, the atomic ratios of Ca, In, and B for phases were measured by inductively coupled plasma atomic emission spectrometry on a Perkin Elmer ICP/6500 spectrometer.

Infrared (IR) spectroscopy was carried out with the objective of specifying and comparing the coordination of boron in the title compound. The mid-infrared

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.11.145

Table I	
List of phase identification in	the system CaO-In ₂ O ₃ -B ₂ O ₃

Samples	CaO (at.%)	InO _{1.5} (at.%)	BO _{1.5} (at.%)	Synthesis temperature	Phase composition
1	20	5	75	800	$CaB_6O_{10} + CaB_2O_4 + InBO_3$
2	40	5	55	950	$Ca_2B_2O_5 + CaB_2O_4 + InBO_3$
3	33.3	22.2	44.5	1000	$T + Ca_2B_2O_5 + InBO_3$
4	50	5	45	950	$T + Ca_2B_2O_5 + Ca_3B_2O_6$
5	25	40	35	1200	$T + InBO_3 + In_2O_3$
6	30	45	25	1200	$Ca_{3}B_{2}O_{6} + In_{2}O_{3}$
7	40	40	20	1200	$Ca_{3}B_{2}O_{6} + In_{2}O_{3} + CaIn_{2}O_{4}$
8	60	25	15	1000	$Ca_3B_2O_6$ + CaO + $CaIn_2O_4$
9	70	15	15	1200	$Ca_3B_2O_6$ + CaO + $CaIn_2O_4$
Н	33.4	66.6	0	1350	CaIn ₂ O ₄
Т	33.3	33.3	33.4	1050	$T + In_2O_3$

spectrum was obtained at room temperature via a Perkin-Elmer 983G infrared spectrophotometer with KBr pellets as standards. It was collected in a range from 400 to 2000 cm⁻¹ with a resolution of 1 cm⁻¹.

3. Results and discussion

3.1. Subsolidus phase relations in CaO–In₂O₃–B₂O₃ system

In the binary system CaO-B₂O₃, six binary compounds CaB₆O₁₀ [11], CaB₄O₇ [12], CaB₂O₄ [ICDD-PDF 76-0747], Ca₂B₂O₅ [ICDD-PDF 79-1516], Ca₃B₂O₆ [13], and Ca₂B₆O₁₁ [14], have been reported. In the work of Hart and Brown [15], Ca₂B₆O₁₁ was synthesized under a hydrothermal condition. We did not observe CaB₄O₇. Yet, there is a possibility that CaB₄O₇ decomposes into CaB₆O₁₀ and CaB₂O₄ above 800 °C. A detailed study of thermal stability of CaB₄O₇ will be necessary. The other four compounds were confirmed in our experiment.

In the system CaO–In₂O₃, two binary compounds have been reported, namely, CaIn₂O₄ [16], and Ca₃In₂O₆ [ICDD-PDF 73-0154]. According to the literature [17], Schenck and Müller-Buschbaum synthesized Ca₃In₂O₆ at above 2000 °C. So, only CaIn₂O₄ was obtained under our present work.

As for the binary system $In_2O_3-B_2O_3$, one binary compound $InBO_3$ was reported by [PDF 82-1188] and confirmed in our experiment.

Based on the phase identifications of eleven samples with different compositions as listed in Table 1, the subsolidus phase relations of CaO–In₂O₃–B₂O₃ system were determined under present experimental conditions, as shown in Fig. 1. There are 9 definite three-phase regions. No solid solution regions were observed in all binary and ternary compounds, and two-phase regions are all jointlines of relevant two compounds. Ternary compound, CaInBO₄ was found and confirmed in this system. Comparing with our work, the powder XRD pattern [9] reported in ICDD-PDF 27-1055 was found incomplete. Moreover, the crystal structure of this compound has no report in previous literatures. Thus, we reinvestigated the crystal structure of compound CaInBO₄, which will be discussed in the following section.

3.2. Crystal structure of CaInBO₄

Using the program DICVOL04 [18] by successive dichotomy method with Si as the internal standard, all the reflections $(2\theta \le 50^\circ)$ of the compound CaInBO₄ can be well indexed on the basis of an orthorhombic unit cell with lattice parameters a = 10.3134(9)Å, b = 9.5159(7), and c = 3.4243(1)Å. Reflection conditions with 0 k l: k + l = 2n, h k 0: h = 2n, h 0 0: h = 2n, 0 k 0: k = 2n, and 0 0 l: l = 2n are consistent with space group Pn2₁a and Pnma. Comparisons between CaInBO₄ and CaYBO₄ in crystal system, lattice parameters and powder XRD pattern show that the two compounds may be isostructural. So we choose the space group Pnma.

Fig. 1. Subsolidus phase relations in the system CaO-In₂O₃-B₂O₃.

In addition, there is no efficiency of second harmonic generation (SHG) in powder samples of CaInBO₄ using the Kurtz–Perry technique [19], which suggests centrosymmetric Pnma space group is more probable.

Taking CaYBO₄ as the preliminary crystal structural model, we refined the structure parameters of CalnBO₄ from the powder XRD data by the Rietveld method [20] using the program FullProf_suite [21]. The profile range of data used for structure refinement is 10–130° in 2θ , and the Pseudo-Voigt function was used as peak shape function. A total of 42 parameters were refined in the refinement, including background parameters, profile parameters, and structural parameters. As for atomic coordinates, all atoms are located on the crystal lattice position 4*c* similar to the case for CaYBO₄ [10]. The agreement factors in the structural refinement finally were converged to R_B = 4.56%, R_P = 7.37%, R_{WP} = 10.9% and S = 2.67, which indicates the structure model is quite right. Fig. 2 shows the final refinement pattern. Details of Rietveld refinement and crystal data are given in Table 2. Positional parameters obtained by the Rietveld refinement are listed in Table 3. By the way, we have

Table 2

Details of Rietveld refinement and crystal data for the structure CaInBO₄.

Sample	Multi-crystal powder
Diffractometer	Rigaku D/MAX-2500
Radiation type	Си Κα
Monochromator	Graphite
Wavelength (Å)	1.5405
Refined profile range (°2 θ)	10-130
Step size (°2 θ)	0.02
Step scan time per step (s)	2
Number of structure parameters	29
Number of profile parameters	13
R _B	4.56%
R _P	7.37%
R _{WP}	10.9%
S	2.67
Formula	CaInBO ₄
Symmetry	Orthorhombic
Space group	Pnma
a (Å)	10.3120(3)
b (Å)	3.42519(8)
<i>c</i> (Å)	9.3950(3)
Volume (Å ³)	336.07(2)
Ζ	4
Calculated density (g cm ⁻³)	2.73

Table 3			
Atomic coordinates and	isotropic displacement	parameters fo	r CaInBO₄.

Atom	Site	x	у	Ζ	$B(Å^2)$	Occ.
Ca1	4 <i>c</i>	0.0879(3)	0.25	0.6563(3)	1.25(1)	0.936
In1	4 <i>c</i>	0.0879(3)	0.25	0.6563(3)	1.25(1)	0.064
In2	4 <i>c</i>	0.1132(1)	0.25	0.0701(1)	0.313(6)	0.936
Ca2	4 <i>c</i>	0.1132(1)	0.25	0.0701(1)	0.313(6)	0.064
01	4 <i>c</i>	0.2514(9)	0.25	0.2385(9)	0.56(4)	1
02	4 <i>c</i>	0.2579(8)	0.25	0.4883(9)	0.24(4)	1
03	4 <i>c</i>	0.5089(8)	0.25	0.6251(9)	0.71(3)	1
04	4 <i>c</i>	0.0547(8)	0.25	0.3821(9)	0.13(1)	1
B1	4 <i>c</i>	0.1867(8)	0.25	0.3682(9)	0.90(1)	1

refined the Ca/In mixed occupation ratios of the two 4*c* sites, but the results are unreasonable. Compared to the presented mixed occupation, the agreement factors were worse when we refined the structure without a mixed occupation of these 4*c* sites. So we kept the Ca/In mixed occupation ratios of the model CaYBO₄.

Fig. 3 shows crystal structural projection of CaInBO₄ along the [0 1 0] direction. The CaInBO₄ orthorhombic cell results from the condensation of distorted Ca(1)/In(1)O₇ polyhedra, In(2)/Ca(2)O₆ octahedra and trigonal BO₃ groups. The planar BO₃ trigons are parallel to each other and stack layer upon layer along the *b* axis. The Ca(1)/In(1)O₇ polyhedra connect each other by sharing their edges and forming [Ca(1)/In(1)]₂O₁₂, which give nearly linear double-chains and infinitely extend along the *b* axis. For [In(2)/Ca(2)]₂O₁₀ double-chains along the *b* axis, the situation is similar. Linkages of different chains in the cell are ensured by sharing edges and vertices with BO₃ groups. The connections of In(2)/Ca(2)O₆ octahedra, Ca(1)/In(1)O₇ polyhedra and BO₃ groups are depicted in Figs. 4 and 5, respectively.

In the building units of CaInBO₄ structure, the B–O bond lengths vary from 1.36(1) to 1.40(1) Å with an average value of 1.38 Å, and the O–B–O angles are between 117.1(6) and 123.9(6)°. These values are normal in a BO₃ plane triangle. The Ca(1)/In(1) atom is bound to seven O atoms at length ranging from 2.234(9) to 2.631(9) Å with average Ca(1)/In(1)–O distance, 2.404 Å, which agrees well with the average Ca–O value 2.419 Å reported in LiCaBO₃ [22]. The oxygen polyhedron of one independent In(2)/Ca(2) site is a regular In(2)/Ca(2)O₆ octahedron with In(2)/Ca(2)–O distances

Fig. 3. Crystal structure of CalnBO₄ along the [010] direction. Large gray circles stand for Ca(1)/In(1) atoms, small gray circles for In(2)/Ca(2) atoms, big black circles for B atoms, small black circles for O atoms (in black-and-white for printing purpose).

between 2.144(9) and 2.303(5) Å. The average In(2)/Ca(2)–O distance, 2.212 Å, is longer than the value 2.18 Å for In–O bond length in $Ba_3InB_9O_{18}$ [23]. These results may be ascribed to the mixed occupancies between Ca and In atoms in the structure of CaInBO₄.

All standard deviations for bond lengths and angles are within experimental error expected for metrically regular geometries. Some selected geometric parameters in the structure of CaInBO₄ are listed in Table 4. To examine the validity of the determined structure of CaInBO₄, Brown's bond valence method [24] was used to calculate the valence sum for each ion. From the results given in Table 5, it is proposed that the calculated valence sums for all ions are reasonable considering the situation of mixed occupancies in this structure.

Fig. 2. Final Rietveld refinement patterns for CalnBO₄. Small dots represent the experimental values and solid lines for the calculated pattern. The solid line at the bottom is the difference between the experimental and calculated values. The vertical bars show the positions of the calculated Bragg reflections.

Table 4

Selected geometric parameters (Å or°) in structure CaInBO₄.

Ca(1)/In(1)	$\begin{array}{c} -0(3)^{a} \\ -0(4)^{b} \\ -0(4)^{c} \\ -0(2) \\ -0(1)^{d} \\ -0(1)^{e} \\ -0(4) \end{array}$	2.234(9) (Å) 2.287(6) (Å) 2.287(6) (Å) 2.372(9) (Å) 2.508(7) (Å) 2.508(7) (Å) 2.631(9) (Å)	In(2)/Ca(2)	$\begin{array}{c} -O(1) \\ -O(3)^{f} \\ -O(3)^{g} \\ -O(3)^{h} \\ -O(2)^{h} \\ -O(2)^{i} \end{array}$	2.144(9) (Å) 2.146(8) (Å) 2.189(5) (Å) 2.189(5) (Å) 2.303(5) (Å) 2.303(5) (Å)
B(1)	-0(2) -0(4) -0(1)	1.36(1) (Å) 1.37(1) (Å) 1.40(1) (Å)	O(2)-B(1)-O(4) O(2)-B(1)-O(1) O(2)-B(1)-O(1)	117.1(6) (°) 118.8(6) (°) 123.9(6) (°)	
^a $-1/2 + x, 1/2 - y, 3/2 - z$. ^b $-x, 1/2 + y, 1 - z$. ^c $-x, -1/2 + y, 1 - z$.					

d	1/2	-x	1 —	ν	1/:	2+	2
	112	- A.		v.			

 $e^{1/2} - x, -y, 1/2 + z.$

f = -1/2 + x, 1/2 - y, 1/2 - z.

-1/2 + x, 1/2 - y, 1/2 - y

^h 1/2 - x, 1 - y, -1/2 + z.

ⁱ 1/2 - x, -y, -1/2 + z.

Table 5

Bond valence analysis of CaInBO₄.

Atoms	O(1)	O(2)	O(3)	O(4)	Σs_{calc}	$\Sigma s_{ m theo}$
Ca(1)/In(1)	0.2317*2	0.3347*1	0.4860*1	0.4211*20.1662*1	2.2925	2.064
In(2)/Ca(2)	0.5199*1	0.3383*2	0.5171*10.4604*2		2.6344	2.936
B(1)	0.925*1	1.0271*1		0.9995*1	2.9516	3
Σs_{calc}	1.9083	2.0384	1.9239	2.0079		
$\Sigma s_{ m theo}$	2	2	2	2		

Note. The results refer to the equation $s = \exp[(r_0 - r)/B]$ with $r_0 = 1.967$ Å, 1.902 Å and 1.371 Å for Ca–O, In–O and B–O, respectively, and B=0.37.

3.3. IR spectra

In order to further confirm the coordination surroundings of B–O in the CalnBO₄ structure, an infrared absorption spectrum for CalnBO₄ was measured at room temperature and given in Fig. 6. Bands below 500 cm^{-1} mainly originates from the lattice dynamic modes, while the absorption wavenumber profile in $600-800 \text{ cm}^{-1}$ is assigned to plane bending vibration of BO₃ units. According to Kamitsos's report [25], the strong absorption wavenumber profile above 1145 cm^{-1} are generated by the stretching vibrations of the triangular BO₃ groups. It is found that there are several closely

spaced peaks about 1200 cm⁻¹, which are believed to come from the different bond lengths of B–O.

In crystal structure of this complex borate, the boron atoms are trigonally coordinated by oxygen atoms, which is confirmed by the appearance of characteristic frequencies of an isolated plane triangle of symmetry in the spectral region studied. The infrared absorption spectra of compound CaInBO₄ indicates that its crystal structure is agree with the X-ray powder diffraction data, confirming the existence of the $[BO_3]^{3-}$ groups. This result is similar to what were reported in previous works [25,26].

Fig. 4. View of the connection between $In(2)/Ca(2)O_6$ octahedra and triangular BO_3 groups.

Fig. 5. The connection of distorted $Ca(1)/In(1)O_7$ polyhedra and triangular BO_3 groups.

g 1/2 - x, -y, -1/2 + z.

Table 6

Crystal information of compounds MRBO₄ (M and R are divalent and trivalent cations, respectively).

Compound	R^{3+}/M^{2+}	S.G.	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	$V(Å^3)$	Ζ
MgAlBO ₄ [27]	0.7727	Pnma(62)	9.8780	5.6750	4.3280	242.62	4
MgGaBO ₄ [28]	0.9394	Pnma(62)	9.1847	3.0779	9.2942	262.74	4
MgScBO ₄ [29]	1.1061	Pnma(62)	9.4900	3.2189	9.4420	288.43	4
ZnFeBO ₄ [30]	0.8649	Pnma(62)	9.2462	3.1410	9.3530	271.63	4
CaAlBO ₄ [31]	0.5152	Ccc2(37)	8.2690	15.2270	5.7330	721.85	8
CaGaBO ₄ [32]	0.6263	Ccc2(37)	8.2940	15.4730	5.8392	749.36	8
CaInBO ₄ ^a	0.8182	Pnma(62)	10.3120	3.4252	9.3950	336.07	4
CaYBO ₄ [10]	0.8990	Pnma(62)	10.4354	3.5880	9.6126	359.92	4
SrAlBO ₄ [33]	0.4554	Pccn(56)	8.8600	15.1700	5.4800	736.55	8
β-SrGaBO ₄ [34]	0.5536	P2 ₁ 2 ₁ 2(18)	8.9921	15.3707	5.9191	818.11	8
α -SrGaBO ₄ [35]	0.5536	Pccn(56)	8.9186	15.3154	5.8130	794.01	8
PbAlBO ₄ [36]	0.425	Pnma(62)	6.9209	5.7134	8.0215	317.19	4
PbCrBO ₄ [37]	0.525	Pnma(62)	6.9501	5.9410	8.1386	336.05	4
PbGaBO ₄ [38]	0.5167	Pnma(62)	6.9944	5.8925	8.2495	340	4
PbFeBO ₄ [37]	0.5333	Pnma(62)	7.0089	5.9412	8.3339	347.03	4
PbBiBO ₄ [39]	0.8	P12 ₁ /c1(14)	7.4730	7.5170	10.5264	427.29	4
BaBiBO ₄ [40]	0.7164	Pna2 ₁ (33)	8.5817	9.6802	5.1505	427.87	4

^a This work.

3.4. Crystal structure of compounds MRBO₄ (M and R are divalent and trivalent cations, respectively) [27–40]

Although the title compound has the similar isolated planar $[BO_3]^{3-}$ anionic groups and the same formula MRBO₄ with CaAlBO₄, SrGaBO₄, PbBiBO₄ and BaBiBO₄, different structures are found in those borates. The structure types strictly depend on the relative size of the two cations of these compounds. Table 6 lists crystal informations of compounds MRBO₄ (M = Mg, Zn, Ca, Sr, Pb, Ba; R = Al, Ga, Cr, Fe, Sc, In, Y, Bi) reported in both previous literatures and this work. From Table 6, one can see that unit cell with the Pnma type expands linearly with the increasing of M' and R' ionic radius. Most is worth mentioning, values for R³⁺/M²⁺ in MRBO₄ are between 0.425 for PbAlBO₄ up to 1.1061 for MgScBO₄, as shown in Fig. 7. Both CaGaBO₄ structure and BaBiBO₄ structure have lowersymmetry, which the values for R^{3+}/M^{2+} in these crystal structures are in the range from 0.6 to 0.7. Obviously, the symmetry of Bi derivatives are much lower and decreases with the reduction of M' ionic radius. In authors' opinion, there are still many possible derivatives of MRBO4 if the R³⁺/M²⁺ ratios are dominant in determining stability of these structures. The possible derivatives may include ZnAlBO₄, ZnGaBO₄, ZnScBO₄, ZnInBO₄, MgInBO₄, PbScBO₄, PbInBO₄ and so on. Of course, the existences of those derivatives need to be confirmed by experiments. From the point of rule for ionic radii ratios, there must exist upper and lower limit for R³⁺/M²⁺

Fig. 6. Infrared spectra for powder CaInBO₄ sample.

Fig. 7. The evolution of the ionic radii ratios M/R with increasing R³⁺ radius for MRBO₄ (M and R are divalent and trivalent cations, respectively) compounds.

in those compounds. In order to determine the maximum and minimum of R^{3+}/M^{2+} values and the relation to symmetry of MRBO₄, syntheses of other substituted derivatives remain to be investigated in the future work.

4. Conclusions

In this work, the subsolidus phase relations of CaO-In₂O₃-B₂O₃ system were established. The crystal structure of ternary compound CaInBO₄ in this system was determined from powder X-ray diffraction data using Rietveld method. It has a stacked structure consisting of $Ca(1)/In(1)O_7$ polyhedra and $In(2)/Ca(2)O_6$ octahedra connected each other sharing vertices and edges of BO₃ groups, with the nearly linear $-[Ca(1)/In(1)]_2O_{12}$ - double-chains and -[In(2)/Ca(2)]2O10- double-chains extending infinitely along the b axis. CaInBO₄ is isostructural to CaYBO₄, with the similar chemical bond nature around metal cations. Coordination surrounding of B–O in this structure, [BO₃]^{3–} group, was confirmed by infrared absorption spectrum of CaInBO₄. The planar BO₃ trigons are parallel to each other and stack layer upon layer along the b axis. A large birefringence is expected from this structural character for $[BO_3]^{3-}$ group. The compounds with the MRBO₄ formula (M = divalent cations, R = trivalent cations) are in a large family of monoborates with different structure types strictly depending on the relative size of the M and R ions. The variety of the MRBO₄ structures may be of benefit to tailoring the physical and chemical properties of these materials.

Acknowledgements

Financial support by the National Natural Science Foundation of China (Grant number 51002189.) is gratefully acknowledged. The work was also supported through a Grant-in-Aid from Department for Science and Technology of Hunan province. The authors thank Hong Bo, and Jiwu Huang (School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China) for their kind help.

References

- P.D. Thompson, J.F. Huang, R.W. Smith, D.A. Keszler, J. Solid State Chem. 95 (1991) 126.
- [2] M. He, L. Kienle, A. Simon, X.L. Chen, V. Duppel, J. Solid State Chem. 177 (2004) 3212.
- [3] P. Gravereau, J.P. Chaminade, S. Pechev, V. Nikolov, D. Ivanova, P. Peshev, Solid State Sci. 4 (2002) 993.
- [4] Z.G. Hu, T. Higashiyama, M. Yoshimura, Y.K. Yap, Y. Mori, T. Sasaki, Jpn. J. Appl. Phys. 37 (1998) L1093.
- [5] L. He, Y.H. Wang, J. Alloys Compd. 431 (2007) 226.
- [6] V. Jubera, J.P. Chaminade, A. Garcia, F. Guillen, C. Fouassier, J. Lumin. 101 (2003) 1.
- [7] G.M. Cai, F. Zheng, D.Q. Yi, Z.P. Jin, X.L. Chen, J. Lumin. 130 (2010) 910.
- [8] G. Blasse, J. Inorg. Nucl. Chem. 31 (1969) 1519.
- [9] J.J. Capponi, J.##E.T. Chenavas, J.C. Joubert, J. Solid State Chem. 7 (1973) 49.
- [10] Y. Zhang, X.L. Chen, J.K. Liang, T. Xu, Y.P. Xu, J. Alloys Compd. 327 (2001) 132.
- [11] X.A. Chen, M. Li, X.N. Chang, H.G. Zang, W.Q. Xiao, J. Alloys Compd. 464 (2008) 332.
- [12] N.V. Zarakina, A.A. Brovkin, Kristallografiya 22 (1977) 275.

- [13] A. Vegas, F.H. Cano, S. García-Blanco, Acta Crystallogr. B 31 (1975) 1416.
- [14] N.V. Zarakina, A.A. Brovkin, Kristallografiya 21 (1976) 502.
- [15] P.B. Hart, C.S. Brown, J. Inorg. Nucl. Chem. 24 (1962) 1057.
 [16] L. Passerini, Gazz. Chim. Ital. 60 (1930) 754.
- [17] R.V. Schenck, H. Müller-Buschbaum, Z. Anorg. Allg. Chem. 398 (1973) 15.
- [17] A. V. Schenek, H. Multer-Buschbaum, Z. Anorg. Ang. Chem. 558 (1975) [18] A. Boultif, D. Louer, J. Appl. Crystallogr. 37 (2004) 724.
- [19] A. Akella, D.A. Keszler, J. Solid State Chem. 120 (1995) 74.
- [20] H.M. Rietveld, Acta Crystallogr. 22 (1967) 151.
- [21] J. Rodriguez-Carvajal, FullProf (Version 3.5d Oct98-LLB-JRC).
- [22] L. Wu, X.L. Chen, H. Li, M. He, L. Dai, X.Z. Li, Y.P. Xu, J. Solid State Chem. 177
- [22] L. WU, AL, CHEH, H. LI, W. HE, L. Dal, A.Z. LI, T.P. AU, J. Solid State Chem. 177 (2004) 1111.
- [23] G.M. Cai, X.L. Chen, W.Y. Wang, Y.F. Lou, J. Liu, J.T. Zhao, H.H. Chen, J. Solid State Chem. 181 (2008) 646.
- [24] I.D. Brown, D. Altermatt, Acta Crystallogr. B 41 (1985) 244.
- [25] E.I. Kamitsos, M. Karakassides, G.D. Chryssikos, J. Phys. Chem. 91 (1987) 1073.
- [26] G.M. Cai, Y. Sun, H.K. Li, X. Fan, X.L. Chen, F. Zheng, Z.P. Jin, Mater. Chem. Phys. 129 (2011) 761.
- [27] J.H. Fang, K.E. Newnham, Mineral. Mag. J. Mineral. Soc. (1876–1968) 35 (1965) 196.
- [28] Z. Yang, X.L. Chen, J.K. Liang, Y.C. Lan, T. Xu, J. Alloys Compd. 319 (2001) 247.
- [29] R. Norrestam, Z. Kristallogr. 189 (1989) 1.
- [30] S. Busche, K. Bluhm, Z. Naturforsch, B. Anorg, Chem. Org. Chem. 50 (1995) 1450.
- [31] W. Schuckmann, Neues Jahrb. Mineral., Monatsh. 1968 (1968) 80.
- [32] Z. Yang, J.K. Liang, X.L. Chen, T. Xu, Y.P. Xu, J. Alloys Compd. 327 (2001) 215.
- [33] T. Nagai, M. Ihara, J. Ceram. Assoc., Jpn. 80 (1972) 432.
- [34] Z. Yang, J.K. Liang, X.L. Chen, J.R. Chen, J. Solid State Chem. 165 (2002) 119.
- [35] Z. Yang, X.L. Chen, J.K. Liang, M. He, J.R. Chen, Cryst. Res. Technol. 39 (2004) 634.
- [36] H.-S. Park, J. Barbier, R.P. Hammond, Solid State Sci. 5 (2003) 565.
- [37] H. Park, R. Lam, J.E. Greedan, J. Barbier, Chem. Mater. 15 (2003) 1703.
- [38] H. Park, J. Barbier, Acta Crystallogr., Sect. E: Struct. Rep. Online 57 (2001) 82.
- [39] X. Chen, J. Zuo, X. Chang, Y. Zhao, H. Zang, W. Xiao, J. Solid State Chem. 179 (2006) 3191.
- [40] J. Barbier, N. Penin, A. Denoyer, L.M.D. Cranswick, Solid State Sci. 7 (2005) 1055.